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J. Phys. A: Math. Gen. 13 (1980) 1557-1562. Printed in  Great Britain 

Infrared bound for the massless propagator in a Yang-Mills 
field 

R F Streater 
Bedford Collcge, University of London, Regent's Park, London NWl 4NS, UK 

Received 3 October 1979 

Abstract. We consider the covariant Laplacian in 88" with Dirichlet boundary conditions on 
the boundary of a 'regular' region A, in an arbitrary Yang-Mills field A of class C ' .  We 
prove that its Green function C,,(A) obeys 

~ ~ G , , ( A ) ~ ~ G  IlG,,(O)ll for all A. 

The proof is based on a comparison theorem with finite-difference operators, and a result 
for gauge fields on a lattice. 

1. Introduction and definitions 

In an earlier paper (Streater 1980) we obtained a lower bound for the finite-difference 
Laplacian with Dirichlet boundary conditions, in terms of a purely geometrical size, 
d ( A )  of the region A, A 5 R2. Weinberger's inequality (Weinberger 1956, see also 
Wasow and Forsythe 1960), which relates the eigenvalues of the Laplacian in a region A 
to those of the finite-difference Laplacian in a bigger grid A" 2 A, was then used to 
obtain a lower bound for the Laplacian itself. This gives a slight improvement on 
Hayman's result (Hayman 1978). In this paper we show that the same bound holds, too, 
for the covariant Laplacian coupled to an arbitrary gauge field A belonging to any 
unitary representation of any Lie group Ce (the gauge group). The main tool is a 
comparison theorem with the analogous finite-difference operator, similar to Wein- 
berger's inequality. The method gives similar estimates in higher dimensions. 

We now briefly describe the Yang-Mills theory in Euclidean space and its version on 
a lattice. We are given a Lie group Ce and to each pair of points x, y in R" and 
(rectifiable) path 1 from x to y, is associated a group element g ( x ,  y ;  I). This is 
postulated to obey 

(i) 

(ii) 

(iii) 

g b ,  x ;  0) = 1% 

g ( x ,  y ;  1) = g - Y y ,  x ;  - 11, 

g(x, y ; l ) g ( y ,  z ; 1') = g(xt 2 ;  1 U 1'1, 

where I is the identity in Ce and 1 U 1' is the obvious continuous path from x to z. 
Smoothness conditions will be imposed on g as needed. We postulate that % is 
continuously represented by unitary operators in a Hilbert space L. The vectors in L 
describe the internal degrees of freedom of a multiplet of particles, whose complete 
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1558 R F Streater 

description is by a vector in K = L 0 L 2 ( R " ) .  The connection between the wavefunc- 
tions at different points along the path 1 is defined to be 

V ( X ,  y ;  0 = V ( g ( x ,  y ;  1)). 

A ++ g ( x ,  x + A A  ; I ) ,  

(1) 

To each x E R", and unit vector ii E R", the map 

A ER, 

(where 1 is the straight line from x to x + A i )  defines a curve in G. If g is a c '-function of 
y ,  then this curve (which passes through ls when A = 0) has a unique tangent vector 
a A ( x )  at A = 0, U A ( X )  lying in the Lie algebra d% and being a continuous function of x. 
The gaugefield at x,  A A ( x ) ,  in the direction 6 is the representation of a A ( x )  coming from 
V ;  thus 

( 2 )  

V ( X , X + A ~ ;  I)-1 
A 

iAA(x) = d V ( a A ( x ) )  = lim 
A -0 

Thus for each direction ii, Af i (x )  is a self-adjoint operator on L representing the Lie 
algebra d%. It defines a self-adjoint operator on K = L 0 L2(R") ,  where the x in A A ( x )  
is 'multiplication by x '  on L2(R") .  The covariant derivative of a vector field 9 E K is 

vi+ = lim ( V ( X ,  x +A;; I)+(x +A:) - + ( x ) ) A - '  
A-0 

= (iAj(x)+-)+, a 
d X j  

where f is taken along the j-direction. The covariant Laplacian is defined to be 

n 

(Dirichlet), 
j =  1 j =  1 

(3) 

(4) 

acting on the multiplet states in K ( A )  
for which we seek an estimate, is 

L 0 L2(A) .  The covariant massless propagator, 

GJA) = ( -  A,,(A))-'. ( 5 )  

The lattice version of a gauge theory replaces R" by E" and restricts the possible paths to 
the union of bonds i.e. links between the lattice sites. A wavefunction of the multiplet is 
taken to belong to 12(E'*, L).  The gauge field is introduced by defining, for each bond in 
Z" (i.e. each ordered pair ( x ,  y )  E Z" X Z" with x,  y nearest neighbours), a group element 
g ( x ,  y)  E %. From this we can construct the group element connecting x 1  to x, by the 
chain ( x l , .  . . , x,) = 1 to be 

g(X1, xm; I ) =  g ( X 1 ,  x2)g(x2,  ~ 3 )  * * * g(xm-1, xm). 

This definition ensures that g obeys the discrete analogue of (iii). In what follows, only 
the concept of g ( x ,  y)  for nearest neighbours will be needed. The discrete analogue of 
the covariant derivative (3) is 

(6) 

Here V ( x ,  y )  = V ( g ( x ,  y ) )  is the given representation on L, and ~ E Z "  is one of 
(1,0, . . . , 0), (0, 1, . . . , O), (0, . . , 0, 1) where h is the mesh size. The analogue of the 

(S j+) (X)  = h-l( V ( x ,  x + h i j + ( x  + hjj -  $ ( x ) ) .  
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covariant Laplacian is 
n 

- D ( g ) =  c spj. 
j =  1 

(7) 

In considering Dirichlet boundary conditions for D ( g )  in a region A we must note that 
neither Si nor ST leaves 12(A; L) invariant. As in Streater (1979) we introduce the 
projection EA from 12(2", L )  to 12(A, L )  and define the Dirichlet difference Laplacian to 
be 

DA(g)  = EAD(g)EA* (8) 
In the next section we show that the lowest point in the spectrum of - AA(A) is greater 
than the lowest point in the spectrum of -DA*(g) for a certain field g, where A* c E" is 
slightly larger than A G 08". The method is adapted from Weinberger (1956, see also 
Wasow and Forsythe 1960). 

2. The comparison theorem 

Consider the operator S j  (equation (6)) on a mesh of size h, embedded in R" on which 
the smooth gauge field Aj(x)  is defined. We would like to write (6) as the integral of its 
differential from x to x + j  along the bond. To this end define, for each 4 E i2(2", L), the 
one-parameter family of vectors 

@(?I = V(X, x + y ; )$b  + y;), 0 s  y~ h. 
Then 

@(y+  y f )  = V(x,  x + yî + y'i^)$(x + yî + 7';) 

= V(x, x + 7;) V(x  + y i  x + y;+ y ' i ) $ ( x  + yî + y f i ) .  
Thus 

y f - l ( w  + y f )  - @ ( y ) )  

+ V(X, x + yi^)($(x + yî + yfi^)-- $(x + yi^))y? 

Take the limit y f  + 0 giving 

We conclude that 
h 

haj$= 5 V(x,  
0 

Lemma 
. h  
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Pro0 f 

hSj$ = V(x, x + hy)+(x + h;) - G(x) 

= loh dyV(x, x + 7f)Vi+(x + 7;). 

Let + k ( y )  be the kth component of V(x ,  x + yi?,Vj+(x + yy), 1. -= k <dim L. Then 

U 

Now let A c R" be any open set and let A" c H" be the lattice of mesh h such that x E A" 
if and only if x -t- CY E A for some a with laI( < h, j = 1, 2 ,  . . . , 11. Let A* denote the lattice 
A" together with its nearest neighbours. Clearly A" 2 A n H" and A* contains an extra 
row on the 'left-hand side' of A in each coordinate. If X is an operator, we denote its 
spectrum by ( T ( X ) .  Let V(x,  y )  be a gauge potential of class C1(A), and for each (Y ER" 
with 0 G CY, s h lee V,(x,  y )  L= V(x  t a, y + a ) .  Let 

A =inf u(-AA(V))  

A: = inf (T( - D,*( V,)) 

A* = inf A:. 
a 

Theorem. A 3 A * (the comparison theorem). 

Proof. Let IC, E C y  (A, L) ,  i.e. each component of I/I vanishes in the neighbourhood of 
the boundary of A and supp + c A. Because of the choice of A*, 4 ( x ;  a )  $(x + a ) ,  
defined on the lattice A", obeys the boundary conditions for tile Dirichlet difference 
Laplacian in A*. Hence it is a trial function for the Kayleigh-Ritz inequality, with 
lattice gauge field a/, : 

This is true for all CY, 0 S u1 s h. Replaee A: on the left by A *  (the inequality clearly 



I I ~  bound for massless propagator in Yang-Mills field 1561 

remains true) and integrate over 0 

h2A" I d a l  . . . /o"da,~~$(x +*)I[;, 

aj  s h, j = 1 , . . . , n. This gives 
h 

x o  

6 I dna  C f I/V(x +a,  x + a  +y)*(x + a  + f ) - $ ( x  +a)l l i .  

The left-hand side is A*h2SA l ($ f ( l i  dnx. The typical term on the right-hand side is 

I d"a I/V(x +a, x + a  +j^)$(x  + a  +y)-$(x +a)I( i  

x j = 1  

by the lemma; this is equal to 

h I d"x Ioh I IV ,W + r,f)llidr. 

But dx is translation invariant, so this is equal to 

Summing over j we get 

so 

Take the supremum over the right-hand side. This gives A *(A) s A (A). 

3. The infrared bound 

Brydges et a1 (1980) have proved that the Green function for a lattice gauge theory is 
pointwise dominated by the propagator with V = 1 for the same region. This implies 
that A * (  V )  3 A * ( l )  for any gauge field. Combining with our result in 0 2, we see that 
A,,( V) 2 A *(1) for every lattice A* 2 A. For regular regions (without too many spikes) 
we have (Weinberger 1956, see also Wasow and Forsythe 1960) 

A A =  sup A Z ( 1 )  
A*ZA 

so we obtain 

A,t(V) 3 A A ( ~ ) .  

That is, the lowest eigenvalue (or lowest point on the spectrum if A is not compact) of 
the covariant Laplacian is bounded below by that of the ordinary Dirichlet Laplacian 
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for the same region. I have obtained a geometrical bound for A *( 1) if n = 2 or if A is 
convex (Streater 1980). If n = 2 we got 

where d is the size of the largest square that can be drawn inside A*. By varying A* and 
reducing h we can optimise this estimate. Combining with the main result of 0 2 ,  we 
obtain 

Actually, this result can be obtained directly by the methods of Streater (1980) without 
appealing to Brydges et a1 (1980). Taking the limit h + 0 gives 
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