Infrared bound for the massless propagator in a Yang-Mills field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 131557
(http://iopscience.iop.org/0305-4470/13/5/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:38

Please note that terms and conditions apply.

Infrared bound for the massless propagator in a Yang-Mills field

R F Streater
Bedford College, University of London, Regent's Park, London NW1 4NS, UK

Received 3 October 1979

Abstract

We consider the covariant Laplacian in \mathbb{R}^{n} with Dirichlet boundary conditions on the boundary of a 'regular' region Λ, in an arbitrary Yang-Mills field A of class C^{1}. We prove that its Green function $G_{\Lambda}(A)$ obeys

$$
\left\|G_{\Lambda}(A)\right\| \leqslant\left\|G_{\Lambda}(0)\right\| \quad \text { for all } A
$$

The proof is based on a comparison theorem with finite-difference operators, and a result for gauge fields on a lattice.

1. Introduction and definitions

In an earlier paper (Streater 1980) we obtained a lower bound for the finite-difference Laplacian with Dirichlet boundary conditions, in terms of a purely geometrical size, $d(\Lambda)$ of the region $\Lambda, \Lambda \subseteq \mathbb{R}^{2}$. Weinberger's inequality (Weinberger 1956, see also Wasow and Forsythe 1960), which relates the eigenvalues of the Laplacian in a region Λ to those of the finite-difference Lapiacian in a bigger grid $\Lambda^{*} \supseteq \Lambda$, was then used to obtain a lower bound for the Laplacian itself. This gives a slight improvement on Hayman's result (Hayman 1978). In this paper we show that the same bound holds, too, for the covariant Laplacian coupled to an arbitrary gauge field A belonging to any unitary representation of any Lie group \mathscr{G} (the gauge group). The main tool is a comparison theorem with the analogous finite-difference operator, similar to Weinberger's inequality. The method gives similar estimates in higher dimensions.

We now briefly describe the Yang-Mills theory in Euclidean space and its version on a lattice. We are given a Lie group \mathscr{G} and to each pair of points x, y in \mathbb{R}^{n} and (rectifiable) path l from x to y, is associated a group element $g(x, y ; l)$. This is postulated to obey

$$
\begin{equation*}
g(x, x ; 0)=1_{G} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
g(x, y ; l)=g^{-1}(y, x ;-l) \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
g(x, y ; l) g\left(y, z ; l^{\prime}\right)=g\left(x, z ; l \cup l^{\prime}\right) \tag{iii}
\end{equation*}
$$

where $1_{\mathscr{G}}$ is the identity in \mathscr{G} and $l \cup l^{\prime}$ is the obvious continuous path from x to z. Smoothness conditions will be imposed on g as needed. We postulate that \mathscr{G} is continuously represented by unitary operators in a Hilbert space L. The vectors in L describe the internal degrees of freedom of a multiplet of particles, whose complete
description is by a vector in $K=L \otimes L^{2}\left(\mathbb{R}^{n}\right)$. The connection between the wavefunctions at different points along the path l is defined to be

$$
\begin{equation*}
V(x, y ; l)=V(g(x, y ; l)) \tag{1}
\end{equation*}
$$

To each $x \in \mathbb{R}^{n}$, and unit vector $\hat{n} \in \mathbb{R}^{n}$, the map

$$
\begin{equation*}
\lambda \mapsto g(x, x+\lambda \hat{n} ; l), \quad \lambda \in \mathbb{R}, \tag{2}
\end{equation*}
$$

(where l is the straight line from x to $x+\lambda \hat{n}$) defines a curve in G. If g is a c^{1}-function of y, then this curve (which passes through $1_{\mathscr{G}}$ when $\lambda=0$) has a unique tangent vector $a_{\hat{n}}(x)$ at $\lambda=0, a_{\hat{n}}(x)$ lying in the Lie algebra $\mathrm{d} \mathscr{G}$ and being a continuous function of x. The gauge field at $x, A_{\hat{n}}(x)$, in the direction \hat{n} is the representation of $a_{\hat{n}}(x)$ coming from V; thus

$$
\mathrm{i} A_{\hat{n}}(x)=\mathrm{d} V\left(a_{\hat{n}}(x)\right)=\lim _{\lambda \rightarrow 0} \frac{V(x, x+\lambda \hat{n} ; l)-1}{\lambda} .
$$

Thus for each direction $\hat{n}, A_{\hat{n}}(x)$ is a self-adjoint operator on L representing the Lie algebra d \mathscr{G}. It defines a self-adjoint operator on $K=L \otimes L^{2}\left(\mathbb{R}^{n}\right)$, where the x in $A_{\hat{n}}(x)$ is 'multiplication by x ' on $L^{2}\left(\mathbb{R}^{n}\right)$. The covariant derivative of a vector field $\psi \in K$ is

$$
\begin{align*}
\nabla_{j} \psi & =\lim _{\lambda \rightarrow 0}(V(x, x+\lambda \hat{j} ; l) \psi(x+\lambda \hat{j})-\psi(x)) \lambda^{-1} \\
& =\left(\mathrm{i} A_{j}(x)+\frac{\partial}{\partial x_{j}}\right) \psi \tag{3}
\end{align*}
$$

where \hat{j} is taken along the j-direction. The covariant Laplacian is defined to be

$$
\begin{equation*}
-\Delta_{\Lambda}(A)=\sum_{j=1}^{n} \nabla_{j}^{*} \nabla_{j}=\sum_{j=1}^{n}\left(A_{j}+\mathrm{i} \frac{\partial}{\partial x_{j}}\right)^{2}, \quad \text { (Dirichlet) } \tag{4}
\end{equation*}
$$

acting on the multiplet states in $K(\Lambda) \equiv L \otimes L^{2}(\Lambda)$. The covariant massless propagator, for which we seek an estimate, is

$$
\begin{equation*}
G_{\Lambda}(A)=\left(-\Delta_{\Lambda}(A)\right)^{-1} \tag{5}
\end{equation*}
$$

The lattice version of a gauge theory replaces \mathbb{R}^{n} by \mathbb{Z}^{n} and restricts the possible paths to the union of bonds i.e. links between the lattice sites. A wavefunction of the multiplet is taken to belong to $l^{2}\left(\mathbb{Z}^{n}, L\right)$. The gauge field is introduced by defining, for each bond in \mathbb{Z}^{n} (i.e. each ordered pair $(x, y) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n}$ with x, y nearest neighbours), a group element $g(x, y) \in \mathscr{G}$. From this we can construct the group element connecting x_{1} to x_{m} by the chain $\left(x_{1}, \ldots, x_{m}\right)=l$ to be

$$
g\left(x_{1}, x_{m} ; l\right)=g\left(x_{1}, x_{2}\right) g\left(x_{2}, x_{3}\right) \ldots g\left(x_{m-1}, x_{m}\right) .
$$

This definition ensures that g obeys the discrete analogue of (iii). In what follows, only the concept of $g(x, y)$ for nearest neighbours will be needed. The discrete analogue of the covariant derivative (3) is

$$
\begin{equation*}
\left(\delta_{j} \psi\right)(x)=h^{-1}(V(x, x+h \hat{j}) \psi(x+h \hat{j})-\psi(x)) . \tag{6}
\end{equation*}
$$

Here $V(x, y)=V(g(x, y))$ is the given representation on L, and $\hat{j} \in \mathbb{Z}^{n}$ is one of $(1,0, \ldots, 0),(0,1, \ldots, 0),(0, \ldots, 0,1)$ where h is the mesh size. The analogue of the
covariant Laplacian is

$$
\begin{equation*}
-D(g)=\sum_{j=1}^{n} \delta_{j}^{*} \delta_{j} \tag{7}
\end{equation*}
$$

In considering Dirichlet boundary conditions for $D(g)$ in a region Λ we must note that neither δ_{j} nor δ_{j}^{*} leaves $l^{2}(\Lambda ; L)$ invariant. As in Streater (1979) we introduce the projection E_{Λ} from $l^{2}\left(\mathbb{Z}^{n}, L\right)$ to $l^{2}(\Lambda, L)$ and define the Dirichlet difference Laplacian to be

$$
\begin{equation*}
D_{\Lambda}(g)=E_{\Lambda} D(g) E_{\Lambda} . \tag{8}
\end{equation*}
$$

In the next section we show that the lowest point in the spectrum of $-\Delta_{\Lambda}(A)$ is greater than the lowest point in the spectrum of $-D_{\Lambda^{*}}(g)$ for a certain field g, where $\Lambda^{*} \subseteq \mathbb{Z}^{n}$ is slightly larger than $\Lambda \subseteq \mathbb{R}^{n}$. The method is adapted from Weinberger (1956, see also Wasow and Forsythe 1960).

2. The comparison theorem

Consider the operator δ_{j} (equation (6)) on a mesh of size h, embedded in \mathbb{R}^{n} on which the smooth gauge field $A_{j}(x)$ is defined. We would like to write (6) as the integral of its differential from x to $x+j$ along the bond. To this end define, for each $\psi \in l^{2}\left(\mathbb{Z}^{n}, L\right)$, the one-parameter family of vectors

$$
\Phi(\gamma)=V(x, x+\gamma \hat{j}) \psi(x+\gamma \hat{j}), \quad 0 \leqslant \gamma \leqslant h .
$$

Then

$$
\begin{aligned}
\Phi\left(\gamma+\gamma^{\prime}\right) & =V\left(x, x+\gamma \hat{j}+\gamma^{\prime} \hat{j}\right) \psi\left(x+\gamma \hat{j}+\gamma^{\prime} \hat{j}\right) \\
& =V(x, x+\gamma \hat{j}) V\left(x+\gamma \hat{j}, x+\gamma \hat{j}+\gamma^{\prime} \hat{j}\right) \psi\left(x+\gamma \hat{j}+\gamma^{\prime} \hat{j}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \gamma^{\prime-1}\left(\Phi\left(\gamma+\gamma^{\prime}\right)-\Phi(\gamma)\right) \\
&= V(x, x+\gamma \hat{j}) \frac{V\left(x+\gamma \hat{j}, x+\gamma \hat{j}+\gamma^{\prime} \hat{j}\right)-1}{\gamma^{\prime}} \psi\left(x+\gamma \hat{j}+\gamma^{\prime} \hat{j}\right) \\
&+V(x, x+\gamma \hat{j})\left(\psi\left(x+\gamma \hat{j}+\gamma^{\prime} \hat{j}\right)-\psi(x+\gamma \hat{j})\right) \gamma^{\prime-1} .
\end{aligned}
$$

Take the limit $\gamma^{\prime} \rightarrow 0$ giving

$$
\frac{\partial \Phi(\gamma)}{\partial \gamma}=V(x, x+\gamma \hat{j})\left(\mathrm{i} A_{j}(x+\gamma \hat{j})+\frac{\partial}{\partial x_{j}}\right) \psi(x+\gamma \hat{j}) .
$$

We conclude that

$$
\begin{gathered}
h \delta_{j} \psi=\int_{0}^{h} V(x, x+\gamma \hat{j})\left(\mathrm{i} A_{j}(x+\gamma \hat{j})+\frac{\partial}{\partial x_{j}}\right) \mathrm{d} \gamma \psi(x+\gamma \hat{j}) \\
=\int_{0}^{h} V(x, x+\gamma \hat{j}) \nabla_{j} \psi(x+\gamma \hat{j}) \mathrm{d} \gamma .
\end{gathered}
$$

Lemma

$$
\left\|\delta_{j} \psi\right\|^{2} \leqslant h^{-1} \int_{0}^{h} \mathrm{~d} \gamma\left\|\nabla_{j} \psi(x+\gamma \hat{j})\right\|^{2}
$$

Proof

$$
\begin{aligned}
h \delta_{j} \psi=V(x, & x+h \hat{j}) \psi(x+h \hat{j})-\psi(x) \\
& =\int_{0}^{h} \mathrm{~d} \gamma V\left(x, x+\gamma \hat{j} \nabla_{j} \psi(x+\gamma \hat{j}) .\right.
\end{aligned}
$$

Let $\phi^{k}(\gamma)$ be the k th component of $V(x, x+\gamma \hat{j}) \nabla_{j} \psi(x+\gamma \hat{j}), 1 \leqslant k \leqslant \operatorname{dim} L$. Then

$$
\begin{aligned}
h^{2}\left\|\delta_{j} \psi\right\|^{2}= & \sum_{k}\left|\int_{0}^{h} \mathrm{~d} \gamma \phi^{k}(\gamma)\right|^{2}=\sum_{k}\left|\left\langle 1, \phi^{k}(\gamma)\right\rangle_{L^{2}(0, h)}\right|^{2} \\
& \leqslant \sum_{k}\left[\left(\int_{0}^{h} 1^{2} \mathrm{~d} \gamma\right) \int \mathrm{d} \gamma\left|\phi^{k}(\gamma)\right|^{2}\right]=h \int \mathrm{~d} \gamma \sum_{k}\left|\phi^{k}(\gamma)\right|^{2} \\
& =h \int_{0}^{h} \mathrm{~d} \gamma\left\|V(x, x+\gamma \hat{j}) \nabla_{j} \psi(x+\gamma \hat{j})\right\|^{2} \\
& =h \int_{0}^{h}\left\|\nabla_{j} \psi(x+\gamma \hat{j})\right\|^{2} \mathrm{~d} \gamma .
\end{aligned}
$$

Now let $\Lambda \subseteq \mathbb{R}^{n}$ be any open set and let $\Lambda^{\times} \subseteq \mathbb{Z}^{n}$ be the lattice of mesh h such that $x \in \Lambda^{\times}$ if and only if $x+\alpha \in \Lambda$ for some α with $\left|\alpha_{j}\right| \leqslant h, j=1,2, \ldots, n$. Let Λ^{*} denote the lattice Λ^{\times}together with its nearest neighbours. Clearly $\Lambda^{*} \supseteq \Lambda \cap \mathbb{Z}^{n}$ and Λ^{*} contains an extra row on the 'left-hand side' of Λ in each coordinate. If X is an operator, we denote its spectrum by $\sigma(X)$. Let $V(x, y)$ be a gauge potential of class $C^{1}(\Lambda)$, and for each $\alpha \in \mathbb{R}^{n}$ with $0 \leqslant \alpha_{j} \leqslant h$ let $V_{\alpha}(x, y)=V(x+\alpha, y+\alpha)$. Let

$$
\begin{aligned}
& \lambda=\inf \sigma\left(-\Delta_{\Lambda}(V)\right) \\
& \lambda_{\alpha}^{*}=\inf \sigma\left(-D_{\Lambda^{*}}\left(V_{\alpha}\right)\right) \\
& \lambda^{*}=\inf \lambda_{\alpha}^{*} .
\end{aligned}
$$

Theorem. $\lambda \geqslant \lambda^{*}$ (the comparison theorem).
Proof. Let $\psi \in C_{0}^{\infty}(\Lambda, L)$, i.e. each component of ψ vanishes in the neighbourhood of the boundary of Λ and supp $\psi \subset \Lambda$. Because of the choice of $\Lambda^{*}, \phi(x ; \alpha) \equiv \psi(x+\alpha)$, defined on the lattice Λ^{*}, obeys the boundary conditions for the Dirichlet difference Laplacian in Λ^{*}. Hence it is a trial function for the Rayleigh-Ritz inequality, with lattice gauge field V_{α} :

$$
\lambda_{\alpha}^{*}\|\phi\|^{2} \leqslant \sum_{j=1}^{n}\left\|\delta_{i}^{\alpha} \phi\right\|^{2}
$$

giving
$h^{2} \lambda_{\alpha}^{*} \sum_{x}\|\psi(x+\alpha)\|_{L}^{2} \leqslant \sum_{x} \sum_{j=1}^{n}\|V(x+\alpha, x+\alpha+\hat{j}) \psi(x+\alpha+\hat{j})-\psi(x+\alpha)\|_{L}^{2}$.
This is true for all $\alpha, 0 \leqslant \alpha_{j} \leqslant h$. Replace λ_{α}^{*} on the left by λ^{*} (the inequality clearly
remains true) and integrate over $0 \leqslant \alpha_{j} \leqslant h, j=1, \ldots, n$. This gives

$$
\begin{aligned}
& h^{2} \lambda^{*} \sum_{x} \int_{0}^{h} \mathrm{~d} \alpha_{1} \ldots \int_{0}^{h} \mathrm{~d} \alpha_{n}\|\psi(x+\alpha)\|_{L}^{2} \\
& \quad \leqslant \int \mathrm{~d}^{n} \alpha \sum_{x} \sum_{j=1}^{n}\|V(x+\alpha, x+\alpha+\hat{j}) \psi(x+\alpha+\hat{j})-\psi(x+\alpha)\|_{L}^{2}
\end{aligned}
$$

The left-hand side is $\lambda^{*} h^{2} \int_{\Lambda}\|\psi\|_{L}^{2} \mathrm{~d}^{n} x$. The typical term on the right-hand side is

$$
\begin{array}{r}
\int \mathrm{d}^{n} \alpha \sum_{x}\|V(x+\alpha, x+\alpha+\hat{j}) \psi(x+\alpha+\hat{j})-\psi(x+\alpha)\|_{L}^{2} \\
\leqslant \int_{0}^{h} \mathrm{~d}^{n} \alpha \sum_{x} h \int_{0}^{h} \mathrm{~d} \gamma\left\|\nabla_{j} \psi(x+\alpha+\gamma \hat{j})\right\|_{L}^{2}
\end{array}
$$

by the lemma; this is equal to

$$
h \int \mathrm{~d}^{n} x \int_{0}^{h}\left\|\nabla_{j} \psi(x+\gamma \hat{j})\right\|_{L}^{2} \mathrm{~d} \gamma
$$

But $\mathrm{d} x$ is translation invariant, so this is equal to

$$
h \int_{0}^{h} \mathrm{~d} \gamma \int \mathrm{~d}^{n} x\left\|\nabla_{j}(x+\gamma \hat{j})\right\|_{L}^{2}=h \int_{0}^{h} \mathrm{~d} \gamma \int \mathrm{~d}^{n} x\left\|\nabla_{j} \psi(x)\right\|_{L}^{2}=h^{2} \int_{\Lambda} \mathrm{d}^{n} x\left\|\nabla_{j} \psi\right\|_{L}^{2} .
$$

Summing over j we get

$$
\lambda^{*} \int_{\Lambda}\|\psi\|^{2} \mathrm{~d}^{n} x \leqslant \sum_{j} \int_{\Lambda} \mathrm{d}^{n} x\left\|\nabla_{j} \psi\right\|_{L}^{2}
$$

so

$$
\lambda^{*}(A) \leqslant \frac{\left\langle\psi,-\Delta_{\Lambda}(A) \psi\right\rangle}{\langle\psi, \psi\rangle} \quad \text { for all } \psi \in C_{0}^{\infty}(\Lambda, L)
$$

Take the supremum over the right-hand side. This gives $\lambda^{*}(A) \leqslant \lambda(A)$.

3. The inirared bound

Brydges et al (1980) have proved that the Green function for a lattice gauge theory is pointwise dominated by the propagator with $V=1$ for the same region. This implies that $\lambda^{*}(V) \geqslant \lambda^{*}(1)$ for any gauge field. Combining with our result in $\S 2$, we see that $\lambda_{\Lambda}(V) \geqslant \lambda^{*}(1)$ for every lattice $\Lambda^{*} \supseteq \Lambda$. For regular regions (without too many spikes) we have (Weinberger 1956, see also Wasow and Forsythe 1960)

$$
\lambda_{A}=\sup _{\Lambda^{*} \equiv \Lambda} \lambda_{\Lambda}^{*}(1)
$$

so we obtain

$$
\lambda_{\Lambda}(V) \geqslant \lambda_{\Lambda}(1)
$$

That is, the lowest eigenvalue (or lowest point on the spectrum if Λ is not compact) of the covariant Laplacian is bounded below by that of the ordinary Dirichlet Laplacian
for the same region. I have obtained a geometrical bound for $\lambda^{*}(1)$ if $n=2$ or if Λ is convex (Streater 1980). If $n=2$ we got

$$
\lambda^{*} \geqslant \frac{2}{9 h^{2}}\left[1-\cos \left(\frac{\pi}{8 d / h+8}\right)\right],
$$

where d is the size of the largest square that can be drawn inside Λ^{*}. By varying Λ^{*} and reducing h we can optimise this estimate. Combining with the main result of $\S 2$, we obtain

$$
\lambda(V) \geqslant \sup _{\Lambda^{*} \supset \Lambda} \frac{2}{9 h^{2}}\left[1-\cos \left(\frac{\pi}{8 d / h+8}\right)\right] .
$$

Actually, this result can be obtained directly by the methods of Streater (1980) without appealing to Brydges et al (1980). Taking the limit $h \rightarrow 0$ gives

$$
\lambda(V) \geqslant \frac{\pi^{2}}{576 d^{2}}
$$

References

Brydges D, Fröhlich J and Seiler E 1980 Ann. Inst. Henri Poincaré in the press
Hayman W K 1978 Applic. Analysis 1 247-54
Streater R F 1980 Bull. Lond. Math. Soc. in the press
Wasow W and Forsythe G 1960 Finite Difference Methods for Partial Differential Equations (New York: Wiley)
Weinberger H F 1956 Commun. Pure Appl. Math. 9613-23

