

Home Search Collections Journals About Contact us My IOPscience

Infrared bound for the massless propagator in a Yang-Mills field

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1980 J. Phys. A: Math. Gen. 13 1557 (http://iopscience.iop.org/0305-4470/13/5/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 30/05/2010 at 17:38

Please note that terms and conditions apply.

Infrared bound for the massless propagator in a Yang-Mills field

R F Streater

Bedford College, University of London, Regent's Park, London NW1 4NS, UK

Received 3 October 1979

Abstract. We consider the covariant Laplacian in \mathbb{R}^n with Dirichlet boundary conditions on the boundary of a 'regular' region Λ , in an arbitrary Yang-Mills field A of class C^1 . We prove that its Green function $G_{\Lambda}(A)$ obeys

 $\|G_{\Lambda}(A)\| \leq \|G_{\Lambda}(0)\| \qquad \text{for all } A.$

The proof is based on a comparison theorem with finite-difference operators, and a result for gauge fields on a lattice.

1. Introduction and definitions

In an earlier paper (Streater 1980) we obtained a lower bound for the finite-difference Laplacian with Dirichlet boundary conditions, in terms of a purely geometrical size, $d(\Lambda)$ of the region Λ , $\Lambda \subseteq \mathbb{R}^2$. Weinberger's inequality (Weinberger 1956, see also Wasow and Forsythe 1960), which relates the eigenvalues of the Laplacian in a region Λ to those of the finite-difference Laplacian in a bigger grid $\Lambda^* \supseteq \Lambda$, was then used to obtain a lower bound for the Laplacian itself. This gives a slight improvement on Hayman's result (Hayman 1978). In this paper we show that the same bound holds, too, for the covariant Laplacian coupled to an arbitrary gauge field A belonging to any unitary representation of any Lie group \mathscr{G} (the gauge group). The main tool is a comparison theorem with the analogous finite-difference operator, similar to Weinberger's inequality. The method gives similar estimates in higher dimensions.

We now briefly describe the Yang-Mills theory in Euclidean space and its version on a lattice. We are given a Lie group \mathscr{G} and to each pair of points x, y in \mathbb{R}^n and (rectifiable) path l from x to y, is associated a group element g(x, y; l). This is postulated to obey

- (i) $g(x, x; 0) = 1_{\mathcal{G}}$
- (ii) $g(x, y; l) = g^{-1}(y, x; -l),$

(iii)
$$g(x, y; l)g(y, z; l') = g(x, z; l \cup l'),$$

where $1_{\mathscr{G}}$ is the identity in \mathscr{G} and $l \cup l'$ is the obvious continuous path from x to z. Smoothness conditions will be imposed on g as needed. We postulate that \mathscr{G} is continuously represented by unitary operators in a Hilbert space L. The vectors in L describe the internal degrees of freedom of a multiplet of particles, whose complete

0305-4470/80/051557+06\$01.50 © 1980 The Institute of Physics 1557

description is by a vector in $K = L \otimes L^2(\mathbb{R}^n)$. The connection between the wavefunctions at different points along the path l is defined to be

$$V(x, y; l) = V(g(x, y; l)).$$
 (1)

To each $x \in \mathbb{R}^n$, and unit vector $\hat{n} \in \mathbb{R}^n$, the map

$$\lambda \mapsto g(x, x + \lambda \hat{n}; l), \qquad \lambda \in \mathbb{R},$$
(2)

(where *l* is the straight line from x to $x + \lambda \hat{n}$) defines a curve in G. If g is a c^1 -function of y, then this curve (which passes through $1_{\mathscr{G}}$ when $\lambda = 0$) has a unique tangent vector $a_{\hat{n}}(x)$ at $\lambda = 0$, $a_{\hat{n}}(x)$ lying in the Lie algebra d \mathscr{G} and being a continuous function of x. The gauge field at x, $A_{\hat{n}}(x)$, in the direction \hat{n} is the representation of $a_{\hat{n}}(x)$ coming from V; thus

$$iA_{\hat{n}}(x) = dV(a_{\hat{n}}(x)) = \lim_{\lambda \to 0} \frac{V(x, x + \lambda \hat{n}; l) - 1}{\lambda}.$$

Thus for each direction \hat{n} , $A_{\hat{n}}(x)$ is a self-adjoint operator on L representing the Lie algebra d \mathscr{G} . It defines a self-adjoint operator on $K = L \otimes L^2(\mathbb{R}^n)$, where the x in $A_{\hat{n}}(x)$ is 'multiplication by x' on $L^2(\mathbb{R}^n)$. The covariant derivative of a vector field $\psi \in K$ is

$$\nabla_{j}\psi = \lim_{\lambda \to 0} \left(V(x, x + \lambda \hat{j}; l)\psi(x + \lambda \hat{j}) - \psi(x) \right) \lambda^{-1}$$
$$= \left(iA_{j}(x) + \frac{\partial}{\partial x_{j}} \right) \psi, \tag{3}$$

where \hat{j} is taken along the *j*-direction. The covariant Laplacian is defined to be

$$-\Delta_{\Lambda}(A) = \sum_{j=1}^{n} \nabla_{j}^{*} \nabla_{j} = \sum_{j=1}^{n} \left(A_{j} + i \frac{\partial}{\partial x_{j}} \right)^{2}, \qquad \text{(Dirichlet)}, \tag{4}$$

acting on the multiplet states in $K(\Lambda) \equiv L \otimes L^2(\Lambda)$. The covariant massless propagator, for which we seek an estimate, is

$$G_{\Lambda}(A) = \left(-\Delta_{\Lambda}(A)\right)^{-1}.$$
(5)

The lattice version of a gauge theory replaces \mathbb{R}^n by \mathbb{Z}^n and restricts the possible paths to the union of bonds i.e. links between the lattice sites. A wavefunction of the multiplet is taken to belong to $l^2(\mathbb{Z}^n, L)$. The gauge field is introduced by defining, for each bond in \mathbb{Z}^n (i.e. each ordered pair $(x, y) \in \mathbb{Z}^n \times \mathbb{Z}^n$ with x, y nearest neighbours), a group element $g(x, y) \in \mathcal{G}$. From this we can construct the group element connecting x_1 to x_m by the chain $(x_1, \ldots, x_m) = l$ to be

$$g(x_1, x_m; l) = g(x_1, x_2)g(x_2, x_3) \dots g(x_{m-1}, x_m).$$

This definition ensures that g obeys the discrete analogue of (iii). In what follows, only the concept of g(x, y) for nearest neighbours will be needed. The discrete analogue of the covariant derivative (3) is

$$(\delta_{j}\psi)(x) = h^{-1}(V(x, x+h\hat{j})\psi(x+h\hat{j})-\psi(x)).$$
(6)

Here V(x, y) = V(g(x, y)) is the given representation on L, and $\hat{j} \in \mathbb{Z}^n$ is one of $(1, 0, \ldots, 0), (0, 1, \ldots, 0), (0, \ldots, 0, 1)$ where h is the mesh size. The analogue of the

covariant Laplacian is

$$-D(g) = \sum_{j=1}^{n} \delta_{j}^{*} \delta_{j}.$$
(7)

In considering Dirichlet boundary conditions for D(g) in a region Λ we must note that neither δ_j nor δ_j^* leaves $l^2(\Lambda; L)$ invariant. As in Streater (1979) we introduce the projection E_{Λ} from $l^2(\mathbb{Z}^n, L)$ to $l^2(\Lambda, L)$ and define the Dirichlet difference Laplacian to be

$$D_{\Lambda}(g) = E_{\Lambda} D(g) E_{\Lambda}.$$
(8)

In the next section we show that the lowest point in the spectrum of $-\Delta_{\Lambda}(A)$ is greater than the lowest point in the spectrum of $-D_{\Lambda^*}(g)$ for a certain field g, where $\Lambda^* \subseteq \mathbb{Z}^n$ is slightly larger than $\Lambda \subseteq \mathbb{R}^n$. The method is adapted from Weinberger (1956, see also Wasow and Forsythe 1960).

2. The comparison theorem

Consider the operator δ_j (equation (6)) on a mesh of size h, embedded in \mathbb{R}^n on which the smooth gauge field $A_j(x)$ is defined. We would like to write (6) as the integral of its differential from x to x + j along the bond. To this end define, for each $\psi \in l^2(\mathbb{Z}^n, L)$, the one-parameter family of vectors

$$\Phi(\gamma) = V(x, x + \gamma \hat{j})\psi(x + \gamma \hat{j}), \qquad 0 \le \gamma \le h$$

Then

$$\begin{split} \Phi(\gamma+\gamma') &= V(x, x+\gamma \hat{j}+\gamma' \hat{j})\psi(x+\gamma \hat{j}+\gamma' \hat{j})\\ &= V(x, x+\gamma \hat{j})V(x+\gamma \hat{j}, x+\gamma \hat{j}+\gamma' \hat{j})\psi(x+\gamma \hat{j}+\gamma' \hat{j}). \end{split}$$

Thus

$$\begin{split} \gamma'^{-1}(\Phi(\gamma+\gamma')-\Phi(\gamma)) \\ &= V(x,x+\gamma\hat{j}) \frac{V(x+\gamma\hat{j},x+\gamma\hat{j}+\gamma'\hat{j})-1}{\gamma'}\psi(x+\gamma\hat{j}+\gamma'\hat{j}) \\ &+ V(x,x+\gamma\hat{j})(\psi(x+\gamma\hat{j}+\gamma'\hat{j})-\psi(x+\gamma\hat{j}))\gamma'^{-1}. \end{split}$$

Take the limit $\gamma' \rightarrow 0$ giving

$$\frac{\partial \Phi(\gamma)}{\partial \gamma} = V(x, x + \gamma \hat{j}) \Big(iA_j(x + \gamma \hat{j}) + \frac{\partial}{\partial x_j} \Big) \psi(x + \gamma \hat{j}).$$

We conclude that

$$h\delta_{j}\psi = \int_{0}^{h} V(x, x + \gamma \hat{j}) \left(iA_{j}(x + \gamma \hat{j}) + \frac{\partial}{\partial x_{j}} \right) d\gamma\psi(x + \gamma \hat{j})$$
$$= \int_{0}^{h} V(x, x + \gamma \hat{j}) \nabla_{j}\psi(x + \gamma \hat{j}) d\gamma.$$

Lemma

$$\|\delta_j\psi\|^2 \leq h^{-1} \int_0^h \mathrm{d}\gamma \|\nabla_j\psi(x+\gamma\hat{j})\|^2.$$

Proof

$$h\delta_{j}\psi = V(x, x + h\hat{j})\psi(x + h\hat{j}) - \psi(x)$$
$$= \int_{0}^{h} d\gamma V(x, x + \gamma\hat{j})\nabla_{j}\psi(x + \gamma\hat{j})$$

Let $\phi^k(\gamma)$ be the kth component of $V(x, x + \gamma \hat{j}) \nabla_j \psi(x + \gamma \hat{j}), 1 \le k \le \dim L$. Then

$$h^{2} \|\delta_{j}\psi\|^{2} = \sum_{k} \left| \int_{0}^{h} d\gamma \phi^{k}(\gamma) \right|^{2} = \sum_{k} |\langle 1, \phi^{k}(\gamma) \rangle_{L^{2}(0,h)}|^{2}$$
$$\leq \sum_{k} \left[\left(\int_{0}^{h} 1^{2} d\gamma \right) \int d\gamma |\phi^{k}(\gamma)|^{2} \right] = h \int d\gamma \sum_{k} |\phi^{k}(\gamma)|^{2}$$
$$= h \int_{0}^{h} d\gamma \| V(x, x + \gamma \hat{j}) \nabla_{j} \psi(x + \gamma \hat{j}) \|^{2}$$
$$= h \int_{0}^{h} \| \nabla_{j} \psi(x + \gamma \hat{j}) \|^{2} d\gamma.$$

Now let $\Lambda \subseteq \mathbb{R}^n$ be any open set and let $\Lambda^* \subseteq \mathbb{Z}^n$ be the lattice of mesh h such that $x \in \Lambda^*$ if and only if $x + \alpha \in \Lambda$ for some α with $|\alpha_j| \le h, j = 1, 2, ..., n$. Let Λ^* denote the lattice Λ^* together with its nearest neighbours. Clearly $\Lambda^* \supseteq \Lambda \cap \mathbb{Z}^n$ and Λ^* contains an extra row on the 'left-hand side' of Λ in each coordinate. If X is an operator, we denote its spectrum by $\sigma(X)$. Let V(x, y) be a gauge potential of class $C^1(\Lambda)$, and for each $\alpha \in \mathbb{R}^n$ with $0 \le \alpha_i \le h$ let $V_{\alpha}(x, y) = V(x + \alpha, y + \alpha)$. Let

$$\lambda = \inf \sigma(-\Delta_{\Lambda}(V))$$
$$\lambda_{\alpha}^{*} = \inf \sigma(-D_{\Lambda^{*}}(V_{\alpha}))$$
$$\lambda^{*} = \inf_{\alpha} \lambda_{\alpha}^{*}.$$

Theorem. $\lambda \ge \lambda^*$ (the comparison theorem).

Proof. Let $\psi \in C_0^{\infty}(\Lambda, L)$, i.e. each component of ψ vanishes in the neighbourhood of the boundary of Λ and supp $\psi \subset \Lambda$. Because of the choice of Λ^* , $\phi(x; \alpha) \equiv \psi(x + \alpha)$, defined on the lattice Λ^* , obeys the boundary conditions for the Dirichlet difference Laplacian in Λ^* . Hence it is a trial function for the Rayleigh-Ritz inequality, with lattice gauge field V_{α} :

$$\lambda_{\alpha}^{*} \|\phi\|^{2} \leq \sum_{j=1}^{n} \|\delta_{j}^{\alpha}\phi\|^{2}$$

giving

$$h^{2}\lambda_{\alpha}^{*}\sum_{x} \|\psi(x+\alpha)\|_{L}^{2} \leq \sum_{x}\sum_{j=1}^{n} \|V(x+\alpha,x+\alpha+\hat{j})\psi(x+\alpha+\hat{j})-\psi(x+\alpha)\|_{L}^{2}.$$

This is true for all $\alpha, 0 \le \alpha_j \le h$. Replace λ_{α}^* on the left by λ^* (the inequality clearly

remains true) and integrate over $0 \le \alpha_j \le h, j = 1, ..., n$. This gives

$$h^{2}\lambda^{*}\sum_{x}\int_{0}^{h}d\alpha_{1}\dots\int_{0}^{h}d\alpha_{n}\|\psi(x+\alpha)\|_{L}^{2}$$

$$\leq \int d^{n}\alpha\sum_{x}\sum_{j=1}^{n}\|V(x+\alpha,x+\alpha+\hat{j})\psi(x+\alpha+\hat{j})-\psi(x+\alpha)\|_{L}^{2}$$

The left-hand side is $\lambda^* h^2 \int_{\Lambda} \|\psi\|_L^2 d^n x$. The typical term on the right-hand side is

$$\int d^{n} \alpha \sum_{x} \|V(x+\alpha, x+\alpha+\hat{j})\psi(x+\alpha+\hat{j})-\psi(x+\alpha)\|_{L}^{2}$$
$$\leq \int_{0}^{h} d^{n} \alpha \sum_{x} h \int_{0}^{h} d\gamma \|\nabla_{j}\psi(x+\alpha+\gamma\hat{j})\|_{L}^{2}$$

by the lemma; this is equal to

$$h\int \mathrm{d}^n x \int_0^h \|\nabla_j \psi(x+\gamma \hat{j})\|_L^2 \,\mathrm{d}\gamma.$$

But dx is translation invariant, so this is equal to

$$h\int_0^h \mathrm{d}\gamma \int \mathrm{d}^n x \|\nabla_j (x+\gamma \hat{j})\|_L^2 = h\int_0^h \mathrm{d}\gamma \int \mathrm{d}^n x \|\nabla_j \psi(x)\|_L^2 = h^2 \int_\Lambda \mathrm{d}^n x \|\nabla_j \psi\|_L^2$$

Summing over *j* we get

$$\lambda^* \int_{\Lambda} \|\psi\|^2 \, \mathrm{d}^n x \leq \sum_j \int_{\Lambda} \mathrm{d}^n x \|\nabla_j \psi\|_L^2$$

so

$$\lambda^*(A) \leq \frac{\langle \psi, -\Delta_{\Lambda}(A)\psi \rangle}{\langle \psi, \psi \rangle} \qquad \text{for all } \psi \in C_0^{\infty}(\Lambda, L).$$

Take the supremum over the right-hand side. This gives $\lambda^*(A) \leq \lambda(A)$.

3. The infrared bound

Brydges *et al* (1980) have proved that the Green function for a lattice gauge theory is pointwise dominated by the propagator with V = 1 for the same region. This implies that $\lambda^*(V) \ge \lambda^*(1)$ for any gauge field. Combining with our result in § 2, we see that $\lambda_{\Lambda}(V) \ge \lambda^*(1)$ for every lattice $\Lambda^* \supseteq \Lambda$. For regular regions (without too many spikes) we have (Weinberger 1956, see also Wasow and Forsythe 1960)

$$\lambda_{\Lambda} = \sup_{\Lambda^* \ge \Lambda} \lambda_{\Lambda}^*(1)$$

so we obtain

$$\lambda_{\Lambda}(V) \geq \lambda_{\Lambda}(1).$$

That is, the lowest eigenvalue (or lowest point on the spectrum if Λ is not compact) of the covariant Laplacian is bounded below by that of the ordinary Dirichlet Laplacian

for the same region. I have obtained a geometrical bound for $\lambda^*(1)$ if n = 2 or if Λ is convex (Streater 1980). If n = 2 we got

$$\lambda^* \ge \frac{2}{9h^2} \bigg[1 - \cos\bigg(\frac{\pi}{8d/h + 8}\bigg) \bigg],$$

where d is the size of the largest square that can be drawn inside Λ^* . By varying Λ^* and reducing h we can optimise this estimate. Combining with the main result of § 2, we obtain

$$\lambda(V) \ge \sup_{\Lambda^* \Rightarrow \Lambda} \frac{2}{9h^2} \bigg[1 - \cos\bigg(\frac{\pi}{8d/h + 8}\bigg) \bigg].$$

Actually, this result can be obtained directly by the methods of Streater (1980) without appealing to Brydges *et al* (1980). Taking the limit $h \rightarrow 0$ gives

$$\lambda(V) \geq \frac{\pi^2}{576d^2}.$$

References

Brydges D, Fröhlich J and Seiler E 1980 Ann. Inst. Henri Poincaré in the press

Hayman W K 1978 Applic. Analysis 1 247-54

Streater R F 1980 Bull. Lond. Math. Soc. in the press

Wasow W and Forsythe G 1960 Finite Difference Methods for Partial Differential Equations (New York: Wiley)

Weinberger H F 1956 Commun. Pure Appl. Math. 9 613-23